Hydrolienne : Différence entre versions
(30 révisions intermédiaires par 18 utilisateurs non affichées) | |||
Ligne 1 : | Ligne 1 : | ||
− | {{ | + | {{Vivre ensemble}} |
+ | Une '''hydrolienne''' est une éolienne tournant sous l'effet des courants et marées. | ||
+ | |||
+ | [[Image:Hydrolienne_hydrohelix_grande_profondeur.jpg|thumb|right|400 px|<center>Système d'hydrolienne marine mis au point par la société Hydrohélix.</center>]] | ||
− | |||
− | |||
== Description == | == Description == | ||
Les courants marins représentent une énergie fabuleuse qui contrairement aux vents sont constants et prévisibles. C'est un avantage déterminant par rapport aux autres énergies renouvelables intermittentes. | Les courants marins représentent une énergie fabuleuse qui contrairement aux vents sont constants et prévisibles. C'est un avantage déterminant par rapport aux autres énergies renouvelables intermittentes. | ||
Ligne 14 : | Ligne 15 : | ||
=== Fonctionnement === | === Fonctionnement === | ||
+ | [[Image:hydrolienne_illustration_ouestfrance.jpg|thumb|center|600 px|<center>Fonctionnement d'une hydrolienne à turbine.</center>]] | ||
+ | [[Image:Turbine1.jpg|thumb|left|400 px|Composants d'une hydrolienne.]][[Image:Slide0041 image007.jpg|thumb|400 px|Composants d'une hydrolienne.]] | ||
+ | Les composants d'une hydrolienne: | ||
− | + | * '''Le flotteur''' : il s'agit d'un élément de capacité réglable, puisque l’on peut le lester avec plus ou moins d'eau. Pour obtenir le meilleur rendement, il faut que la hauteur d'air emprisonné dans le flotteur, corresponde à la hauteur des vagues à la surface. | |
+ | * '''Le rotor''' : c’est le système, qui, entraîné par les pâles qui tournent grâce à la force des courants, va fournir l’énergie mécanique. Il est relié à plusieurs pâles (on peut en avoir de deux à dix). Ce rotor fonctionne grâce à la houle. Que la houle ait tendance à le soulever ou à le rabaisser, le rotor a été développé de manière à ce qu'il tourne toujours dans le même sens. | ||
+ | * '''Le stabilisateur''' : c’est le mécanisme qui permet aux pâles de toujours être en opposition pour que l'hydrolienne soit en rotation par rapport au sens du courant. | ||
+ | * '''L’alternateur''' : il s'agit d'un générateur électrique, qui transforme l’énergie mécanique en énergie électrique. | ||
− | + | === Implantation === | |
+ | Tous les courants de surface peuvent être exploités, voici la carte des courants marins.[[Image:Hydrolienne_principaux_courants.jpg|600 px|]] | ||
− | + | == Historique == | |
− | |||
− | |||
− | |||
− | |||
− | |||
La houle et les vagues constituent une source d'énergie dont la récupération occupe l'esprit de l'homme depuis la fin du XIXème siècle. Dans l'ouvrage de A.Berget de1923 intitulé "Vagues et marées", on peut déjà trouver quelques dispositifs proposés pour récupérer l'énergie mécanique représentée par le mouvement des vagues. | La houle et les vagues constituent une source d'énergie dont la récupération occupe l'esprit de l'homme depuis la fin du XIXème siècle. Dans l'ouvrage de A.Berget de1923 intitulé "Vagues et marées", on peut déjà trouver quelques dispositifs proposés pour récupérer l'énergie mécanique représentée par le mouvement des vagues. | ||
− | Un premier engin, qui n'avait pas la forme du prototype final, fut testé dans le port de Doélan, en Bretagne, au printemps 1979 avec un prototype dont le rotor avait une aire de 7 m². La hauteur de la houle étant de 80 centimètres, les expérimentateurs récupérèrent une puissance de 3 kW | + | Un premier engin, qui n'avait pas la forme du prototype final, fut testé dans le port de Doélan, en Bretagne, au printemps 1979 avec un prototype dont le rotor avait une aire de 7 m². La hauteur de la houle étant de 80 centimètres, les expérimentateurs récupérèrent une puissance de 3 kW. |
== Les courants marins == | == Les courants marins == | ||
− | Les courants océaniques de surface sont généralement provoqués par le vent | + | Les courants océaniques de surface sont généralement provoqués par le vent. Ils sont typiquement orientés dans le sens des aiguilles d'une montre dans l'hémisphère nord et dans le sens antihoraire dans l'hémisphère sud, du fait de la répartition des vents. Dans les courants provoqués par les vents, l'effet de "Force de Coriolis" se traduit par une déviation angulaire par rapport aux vents qui en sont à l'origine. La localisation des courants change notablement avec les saisons ; ce phénomène est particulièrement sensible pour les courants équatoriaux. |
Les courants de surface concernent environ 10% de l'eau des océans. Ils se limitent généralement aux 300 premiers mètres de l'océan. Le mouvement de l'eau profonde est causé par des forces dues à la densité et à la pesanteur. La différence de densité est fonction de la température et de la salinité. Les eaux profondes s'enfoncent dans les bassins océaniques situés aux latitudes élevées, où les températures sont assez basses pour que la densité augmente. Les principales causes des courants sont le rayonnement solaire, les vents et la pesanteur. Les flux des courants océaniques sont mesurés en Sverdrup . | Les courants de surface concernent environ 10% de l'eau des océans. Ils se limitent généralement aux 300 premiers mètres de l'océan. Le mouvement de l'eau profonde est causé par des forces dues à la densité et à la pesanteur. La différence de densité est fonction de la température et de la salinité. Les eaux profondes s'enfoncent dans les bassins océaniques situés aux latitudes élevées, où les températures sont assez basses pour que la densité augmente. Les principales causes des courants sont le rayonnement solaire, les vents et la pesanteur. Les flux des courants océaniques sont mesurés en Sverdrup . | ||
Ligne 37 : | Ligne 40 : | ||
== Potentiel == | == Potentiel == | ||
− | + | Plusieurs études, menées il y a quelques années, ont estimé le potentiel européen de l'énergie hydroelienne à environ 12,5 GW qui pourraient produire 48 TWh annuels, ce qui représente la capacité de trois centrales électriques récentes. | |
D'après EDF, la France posséderait la deuxième ressource européenne, soit 20% du potentiel européen, correspondant à 10 TWh pour 3 GW « installables », répartis entre la Bretagne et le Cotentin. | D'après EDF, la France posséderait la deuxième ressource européenne, soit 20% du potentiel européen, correspondant à 10 TWh pour 3 GW « installables », répartis entre la Bretagne et le Cotentin. | ||
− | Les courants marins pourraient être exploitables partout dans le monde | + | Les courants marins pourraient être exploitables partout dans le monde. Les courants de marée constituent toutefois pour l'instant le domaine d'application préférentiel de ce type de technologie. Les courants de marée présentent en effet, par rapport aux courants généraux (comme le Gulf Stream), des caractéristiques particulièrement favorables : |
− | + | * intensité importante (dans certaines zones les courants de marée peuvent atteindre ou dépasser 10 nœuds, soit 5 m/s, alors que les courants généraux dépassent rarement 2 nœuds) ; | |
− | + | * proximité de la côte : les veines de courant intense apparaissent dans des zones de faibles profondeurs situées à proximité de la côte, ce qui en facilite l'exploitation ; | |
− | + | * direction stable : les courants de marée sont généralement alternatifs, ce qui simplifie le dispositif de captage ; | |
− | + | * prédictibilité : les courants de marée sont parfaitement prévisibles, puisqu'ils ne dépendent que de la position relative des astres générateurs - Lune et Soleil - et de la topographie locale. | |
== Avantages de l'hydrolienne== | == Avantages de l'hydrolienne== | ||
+ | |||
=== Gratuité === | === Gratuité === | ||
− | Le premier intérêt | + | Le premier intérêt des courants marins en temps que source d'énergie est que cette énergie est gratuite, inépuisable et non polluante. |
+ | |||
=== Non bruyante === | === Non bruyante === | ||
L’hydrolienne ne générera pas de bruit dû à la cavitation, car elle tournera lentement. Elle ne provoquera que très peu de bruit mécanique, car elle ne comporte pas de multiplicateur de vitesse à engrenage. Elle sera silencieuse au fond de l’eau et complètement inaudible en surface. | L’hydrolienne ne générera pas de bruit dû à la cavitation, car elle tournera lentement. Elle ne provoquera que très peu de bruit mécanique, car elle ne comporte pas de multiplicateur de vitesse à engrenage. Elle sera silencieuse au fond de l’eau et complètement inaudible en surface. | ||
+ | |||
=== Impact minimal sur la vie marine === | === Impact minimal sur la vie marine === | ||
La forme du rotor a été étudiée pour ne pas présenter de danger. Aucune pièce mobile n’a de vitesse supérieure à 2 ou 3 fois celle du courant. Les pales ont des bords arrondis non coupants. L’hélice est ceinturée par un anneau lisse éliminant les arêtes de bout de pales. Le champ de pression sur le rotor induit des survitesses du fluide à la périphérie du rotor, comme le font une pile de pont ou un rocher immergé. Un poisson s’approchant du rotor se trouvera rejeté à l’extérieur de celui ci, comme lorsqu’il s’approche d’un rocher dans le courant. La vitesse de l’eau dans le sillage juste derrière le rotor sera réduite d’environ 10%, le sillage se dissipera complètement 20 mètres environ derrière l’hydrolienne. | La forme du rotor a été étudiée pour ne pas présenter de danger. Aucune pièce mobile n’a de vitesse supérieure à 2 ou 3 fois celle du courant. Les pales ont des bords arrondis non coupants. L’hélice est ceinturée par un anneau lisse éliminant les arêtes de bout de pales. Le champ de pression sur le rotor induit des survitesses du fluide à la périphérie du rotor, comme le font une pile de pont ou un rocher immergé. Un poisson s’approchant du rotor se trouvera rejeté à l’extérieur de celui ci, comme lorsqu’il s’approche d’un rocher dans le courant. La vitesse de l’eau dans le sillage juste derrière le rotor sera réduite d’environ 10%, le sillage se dissipera complètement 20 mètres environ derrière l’hydrolienne. | ||
+ | |||
=== Aucune gêne pour la navigation === | === Aucune gêne pour la navigation === | ||
La partie la plus élevée de l’hydrolienne est située à 15 mètres sous la surface de l’eau au moment des plus basses mers. Avec son tirant d’eau de 10 mètres, le Queen Mary 2 pourrait alors passer sans encombre | La partie la plus élevée de l’hydrolienne est située à 15 mètres sous la surface de l’eau au moment des plus basses mers. Avec son tirant d’eau de 10 mètres, le Queen Mary 2 pourrait alors passer sans encombre | ||
De plus, les récupérateurs de houle seraient de nature à calmer les eaux d'un port, puisqu'ils retirent de l'énergie aux mouvements d'eau: la navigation y serait aisée. | De plus, les récupérateurs de houle seraient de nature à calmer les eaux d'un port, puisqu'ils retirent de l'énergie aux mouvements d'eau: la navigation y serait aisée. | ||
+ | == Inconvénients de l'hydrolienne== | ||
− | + | Le principal problème est causé par la corrosion de l'eau de mer. Nous disposons cependant de revêtements anti-rouille très performants et ce vieux rêve technologique pourrait bien devenir la réalité dans peu de temps. | |
− | Le principal problème est causé par la corrosion de l'eau de mer. Nous disposons cependant de revêtements anti rouille très performants et ce vieux rêve technologique pourrait bien devenir la réalité dans peu de temps. | ||
Cependant, son prix est un obstacle à sa mise en place: selon des études réalisées il y a vingt ans, l'énergie houlomotrice reviendrait 10 à 30 fois plus cher que les énergies thermiques. | Cependant, son prix est un obstacle à sa mise en place: selon des études réalisées il y a vingt ans, l'énergie houlomotrice reviendrait 10 à 30 fois plus cher que les énergies thermiques. | ||
− | Il | + | Il existe également des inconvénients au niveau de la maintenance. En effet, certaines hydroliennes sont difficiles d'accès à cause de leur profondeur, et de la circulation maritime au-dessus. |
+ | Il faudra aussi tenir compte des militaires qui pourraient causer de gros dommages avec les sous-marins et des routes maritimes habituellement empruntée par la marine marchande. | ||
+ | |||
== Projets à venir == | == Projets à venir == | ||
− | En France , une première expérience a eu lieu au large de l'estuaire de l'Odet en Bretagne au printemps 2008. Une | + | En France, une première expérience a eu lieu au large de l'estuaire de l'Odet en Bretagne au printemps 2008. Une hydrolienne de type Sabella fabriquée par le français HydroHelix a été alors testée dans les conditions de fonctionnement réel.Le coût du projet s'élève à 750 000 euros. Aux Etats-Unis, 6 des 30 hydroliennes sur les 300 initialement prévues sont en cours d'installation dans l'embouchure de l'Hudson River. Au Royaume-Uni, un projet E.ON et Lunar Energy de 8 turbines de 15 m de haut et 25 m de long, devrait être mis en œuvre au large de la Péninsule de St David, dans le courant de l'été 2008 pour être achevé en 2010. |
== Voir aussi == | == Voir aussi == | ||
Ligne 78 : | Ligne 87 : | ||
=== Liens externes === | === Liens externes === | ||
+ | * http://www.hydrohelix.fr/presentation.html | ||
+ | * http://www.actu-environnement.com/ae/news/hydrolienne_benodet_prototype_energie_marine_4792.php4 | ||
+ | * http://generationsfutures.chez-alice.fr/energie/hydrolienne.htm | ||
+ | * http://colrypem.exen.fr/TPE/TPE-HYDROLIENNES_2006-2007/principe-de-fonctionnement.html (lien valide en dessous) | ||
+ | * http://tpe-hydroliennes.ardakia.com/ | ||
+ | * http://www.energiesdelamer.blogspot.com | ||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Portail Énergie}} | {{Portail Énergie}} | ||
[[Catégorie:Énergies renouvelables]] | [[Catégorie:Énergies renouvelables]] |
Version actuelle en date du 1 mai 2012 à 08:42
Une hydrolienne est une éolienne tournant sous l'effet des courants et marées.
Sommaire
Description[modifier]
Les courants marins représentent une énergie fabuleuse qui contrairement aux vents sont constants et prévisibles. C'est un avantage déterminant par rapport aux autres énergies renouvelables intermittentes. Il existe deux grands types de courants : les courants marins situés plus ou moins au large des côtes et les courants de marée (ou de marnage) que l'on rencontre dans l'embouchure des fleuves et près des côtes.
Pour capter cette énergie, il faut placer des hélices ou des turbines dans l'axe de ces autoroutes de la mer, c'est ce qu'on appelle les hydroliennes (On rencontre aussi les appellations hydrohélienne et aussi éolienne sub-aquatique).
Cette source d'énergie commence seulement à être étudiée en Angleterre, en Italie, en Norvège et aux États-Unis. En France, EDF a comme projet d'en installer dans le Cotentin et en Bretagne. Une entreprise bretonne développe un projet d'hydrolienne pour capter les courants de marée.
Fonctionnement[modifier]
Les composants d'une hydrolienne:
- Le flotteur : il s'agit d'un élément de capacité réglable, puisque l’on peut le lester avec plus ou moins d'eau. Pour obtenir le meilleur rendement, il faut que la hauteur d'air emprisonné dans le flotteur, corresponde à la hauteur des vagues à la surface.
- Le rotor : c’est le système, qui, entraîné par les pâles qui tournent grâce à la force des courants, va fournir l’énergie mécanique. Il est relié à plusieurs pâles (on peut en avoir de deux à dix). Ce rotor fonctionne grâce à la houle. Que la houle ait tendance à le soulever ou à le rabaisser, le rotor a été développé de manière à ce qu'il tourne toujours dans le même sens.
- Le stabilisateur : c’est le mécanisme qui permet aux pâles de toujours être en opposition pour que l'hydrolienne soit en rotation par rapport au sens du courant.
- L’alternateur : il s'agit d'un générateur électrique, qui transforme l’énergie mécanique en énergie électrique.
Implantation[modifier]
Tous les courants de surface peuvent être exploités, voici la carte des courants marins.
Historique[modifier]
La houle et les vagues constituent une source d'énergie dont la récupération occupe l'esprit de l'homme depuis la fin du XIXème siècle. Dans l'ouvrage de A.Berget de1923 intitulé "Vagues et marées", on peut déjà trouver quelques dispositifs proposés pour récupérer l'énergie mécanique représentée par le mouvement des vagues. Un premier engin, qui n'avait pas la forme du prototype final, fut testé dans le port de Doélan, en Bretagne, au printemps 1979 avec un prototype dont le rotor avait une aire de 7 m². La hauteur de la houle étant de 80 centimètres, les expérimentateurs récupérèrent une puissance de 3 kW.
Les courants marins[modifier]
Les courants océaniques de surface sont généralement provoqués par le vent. Ils sont typiquement orientés dans le sens des aiguilles d'une montre dans l'hémisphère nord et dans le sens antihoraire dans l'hémisphère sud, du fait de la répartition des vents. Dans les courants provoqués par les vents, l'effet de "Force de Coriolis" se traduit par une déviation angulaire par rapport aux vents qui en sont à l'origine. La localisation des courants change notablement avec les saisons ; ce phénomène est particulièrement sensible pour les courants équatoriaux.
Les courants de surface concernent environ 10% de l'eau des océans. Ils se limitent généralement aux 300 premiers mètres de l'océan. Le mouvement de l'eau profonde est causé par des forces dues à la densité et à la pesanteur. La différence de densité est fonction de la température et de la salinité. Les eaux profondes s'enfoncent dans les bassins océaniques situés aux latitudes élevées, où les températures sont assez basses pour que la densité augmente. Les principales causes des courants sont le rayonnement solaire, les vents et la pesanteur. Les flux des courants océaniques sont mesurés en Sverdrup .
Potentiel[modifier]
Plusieurs études, menées il y a quelques années, ont estimé le potentiel européen de l'énergie hydroelienne à environ 12,5 GW qui pourraient produire 48 TWh annuels, ce qui représente la capacité de trois centrales électriques récentes.
D'après EDF, la France posséderait la deuxième ressource européenne, soit 20% du potentiel européen, correspondant à 10 TWh pour 3 GW « installables », répartis entre la Bretagne et le Cotentin.
Les courants marins pourraient être exploitables partout dans le monde. Les courants de marée constituent toutefois pour l'instant le domaine d'application préférentiel de ce type de technologie. Les courants de marée présentent en effet, par rapport aux courants généraux (comme le Gulf Stream), des caractéristiques particulièrement favorables :
- intensité importante (dans certaines zones les courants de marée peuvent atteindre ou dépasser 10 nœuds, soit 5 m/s, alors que les courants généraux dépassent rarement 2 nœuds) ;
- proximité de la côte : les veines de courant intense apparaissent dans des zones de faibles profondeurs situées à proximité de la côte, ce qui en facilite l'exploitation ;
- direction stable : les courants de marée sont généralement alternatifs, ce qui simplifie le dispositif de captage ;
- prédictibilité : les courants de marée sont parfaitement prévisibles, puisqu'ils ne dépendent que de la position relative des astres générateurs - Lune et Soleil - et de la topographie locale.
Avantages de l'hydrolienne[modifier]
Gratuité[modifier]
Le premier intérêt des courants marins en temps que source d'énergie est que cette énergie est gratuite, inépuisable et non polluante.
Non bruyante[modifier]
L’hydrolienne ne générera pas de bruit dû à la cavitation, car elle tournera lentement. Elle ne provoquera que très peu de bruit mécanique, car elle ne comporte pas de multiplicateur de vitesse à engrenage. Elle sera silencieuse au fond de l’eau et complètement inaudible en surface.
Impact minimal sur la vie marine[modifier]
La forme du rotor a été étudiée pour ne pas présenter de danger. Aucune pièce mobile n’a de vitesse supérieure à 2 ou 3 fois celle du courant. Les pales ont des bords arrondis non coupants. L’hélice est ceinturée par un anneau lisse éliminant les arêtes de bout de pales. Le champ de pression sur le rotor induit des survitesses du fluide à la périphérie du rotor, comme le font une pile de pont ou un rocher immergé. Un poisson s’approchant du rotor se trouvera rejeté à l’extérieur de celui ci, comme lorsqu’il s’approche d’un rocher dans le courant. La vitesse de l’eau dans le sillage juste derrière le rotor sera réduite d’environ 10%, le sillage se dissipera complètement 20 mètres environ derrière l’hydrolienne.
[modifier]
La partie la plus élevée de l’hydrolienne est située à 15 mètres sous la surface de l’eau au moment des plus basses mers. Avec son tirant d’eau de 10 mètres, le Queen Mary 2 pourrait alors passer sans encombre De plus, les récupérateurs de houle seraient de nature à calmer les eaux d'un port, puisqu'ils retirent de l'énergie aux mouvements d'eau: la navigation y serait aisée.
Inconvénients de l'hydrolienne[modifier]
Le principal problème est causé par la corrosion de l'eau de mer. Nous disposons cependant de revêtements anti-rouille très performants et ce vieux rêve technologique pourrait bien devenir la réalité dans peu de temps. Cependant, son prix est un obstacle à sa mise en place: selon des études réalisées il y a vingt ans, l'énergie houlomotrice reviendrait 10 à 30 fois plus cher que les énergies thermiques.
Il existe également des inconvénients au niveau de la maintenance. En effet, certaines hydroliennes sont difficiles d'accès à cause de leur profondeur, et de la circulation maritime au-dessus. Il faudra aussi tenir compte des militaires qui pourraient causer de gros dommages avec les sous-marins et des routes maritimes habituellement empruntée par la marine marchande.
Projets à venir[modifier]
En France, une première expérience a eu lieu au large de l'estuaire de l'Odet en Bretagne au printemps 2008. Une hydrolienne de type Sabella fabriquée par le français HydroHelix a été alors testée dans les conditions de fonctionnement réel.Le coût du projet s'élève à 750 000 euros. Aux Etats-Unis, 6 des 30 hydroliennes sur les 300 initialement prévues sont en cours d'installation dans l'embouchure de l'Hudson River. Au Royaume-Uni, un projet E.ON et Lunar Energy de 8 turbines de 15 m de haut et 25 m de long, devrait être mis en œuvre au large de la Péninsule de St David, dans le courant de l'été 2008 pour être achevé en 2010.
Voir aussi[modifier]
Liens internes[modifier]
Liens externes[modifier]
- http://www.hydrohelix.fr/presentation.html
- http://www.actu-environnement.com/ae/news/hydrolienne_benodet_prototype_energie_marine_4792.php4
- http://generationsfutures.chez-alice.fr/energie/hydrolienne.htm
- http://colrypem.exen.fr/TPE/TPE-HYDROLIENNES_2006-2007/principe-de-fonctionnement.html (lien valide en dessous)
- http://tpe-hydroliennes.ardakia.com/
- http://www.energiesdelamer.blogspot.com